用户名/邮箱
登录密码
验证码
看不清?换一张
您好,欢迎访问! [ 登录 | 注册 ]
您的位置:首页 - 最新资讯
Пять причин, почему XXI век станет расцветом астрофизики
2017-06-25 00:00:00.0     战略评估与预测中心-政治和地缘政治     原网页

       Масса нейтрино

       Когда мы начали просчитывать на бумаге нейтрино, которые приходят с Солнца, мы получили число, основанное на синтезе, который должен происходить внутри. Но когда мы начали по факту считать нейтрино, приходящие с Солнца, мы увидели лишь треть ожидаемого. Почему? Ответ появился только недавно, когда сочетание измерений солнечных и атмосферных нейтрино показало, что они могут осциллировать из одного типа в другой. Потому что у них есть масса.

       Что это означает для астрофизики. Нейтрино — самые распространенные массивные частицы во Вселенной: их в миллиард раз больше, чем электронов. Если у них есть масса, из этого следует, что:

       они составляют долю темной материи, попадают в галактические структуры, возможно, образуют странное астрофизическое состояние, известное как фермионный конденсат, могут быть связаны с темной энергией.

       Если у нейтрино есть масса, они также могут быть майорановскими частицами (а не более распространенными частицами типа Дирака), обеспечивающими новый тип ядерного распада. Также у них могут быть сверхтяжелые собратья-левши, которые могли бы объяснить темную материю. Нейтрино также переносят большую часть энергии в сверхновых, несут ответственность за остывание нейтронных звезд, влияют на послесвечение Большого Взрыва (CMB) и являются важнейшей частью современной космологии и астрофизики.

       Ускоряющаяся Вселенная

       Если Вселенная начинается с горячего Большого Взрыва, у нее будет два важных свойства: начальная скорость расширения и начальная плотность вещества/излучения/энергии. Если бы плотность была слишком велика, Вселенная воссоединилась бы снова; если слишком мала, Вселенная вечно расширялась бы. Но в нашей Вселенной плотность и расширение не только идеально сбалансированы, но и крошечная часть этой энергии поступает в форме темной энергии, а значит, наша Вселенная начала ускоренно расширяться спустя 8 миллиардов лет и с тех пор продолжает в том же духе.

       Что это означает для астрофизики. Впервые за всю историю человечества мы получили возможность узнать немного о судьбе Вселенной. Все объекты, которые не связаны между собой гравитационно, в конечном счете будут разбегаться, а значит все лежащее за пределами нашей локальной группы однажды улетит прочь. Но какова природа темной энергии? Действительно ли это космологическая постоянная? Связана ли она с квантовым вакуумом? Может ли она быть полем, сила которого меняется со временем? Будущие миссии вроде Euclid ЕКА, WFIRST NASA и новых 30-метровых телескопов позволят осуществить более точные измерения темной энергии и позволят нам точно охарактеризовать, как ускоряется Вселенная. В конце концов, если ускорение растет, Вселенная закончится Большим Разрывом; если падает, Большим Сжатием. На кону судьба целой Вселенной.

       Экзопланеты

       Поколение назад мы думали, что возле других звездных систем существуют планеты, но у нас не было доказательств, подтверждающих этот тезис. В настоящее время, во многом благодаря миссии NASA ?Кеплер?, мы нашли и проверили тысячи таких. Многие солнечные системы отличаются от наших: некоторые содержат суперземли или мини-Нептуны; некоторые содержат газовые гиганты во внутренних частях солнечных систем; большинство содержат миры размером с Землю на правильном расстоянии от крошечных, тусклых, красных карликовых звезд, чтобы на поверхности могла существовать вода в жидком состоянии. И все же многое еще предстоит выяснить.

       Что это означает для астрофизики. Впервые в истории мы обнаружили миры, которые могут быть потенциальными кандидатами для жизни. Мы ближе, чем когда-либо прежде, к обнаружению признаков инопланетной жизни во Вселенной. И многие из этих миров могут когда-нибудь стать домом для человеческих колоний, если мы захотим пойти по этому пути. В 21 веке мы начнем исследовать эти возможности: измерять атмосферы эти миров и искать признаки жизни, отправлять космические зонды на существенной скорости, анализировать их на предмет сходства с Землей по таким признакам, как океаны и континенты, облачный покров, содержание кислорода в атмосфере, времена года. Никогда за всю историю Вселенной не было более подходящего для этого момента.

       Бозон Хиггса

       Открытие частицы Хиггса в начале 2010-х завершило, наконец, Стандартную модель элементарных частиц. Бозон Хиггса имеет массу около 126 ГэВ/с2, распадается через 10-24 секунды и распадается в точности с предсказаниями Стандартной модели. В поведении этой частицы нет никаких признаков существования новой физики за пределами Стандартной модели, и это большая проблема.

       Что это означает для астрофизики. Почему масса Хиггса намного меньше массы Планка? Этот вопрос можно сформулировать по-разному: почему гравитационная сила настолько слабее остальных сил? Существует много возможных решений: суперсимметрия, дополнительные измерения, фундаментальные возбуждения (конформное решение), Хиггс как составная частица (техниколор) и т. д. Но пока у этих решений нет доказательств, да и достаточно ли тщательно мы искали?

       На каком-то уровне должно быть что-то принципиально новое: новые частицы, новые поля, новые силы и т. д. Все они по своей природе будут иметь астрофизические и космологические последствия, и все эти эффекты зависят от модели. Если физика частиц, например, на БАК, не обеспечит никаких новых намеков, возможно, астрофизика обеспечит. Что происходит при самых высоких энергиях и на самых коротких дистанциях? Большой Взрыв — и космические лучи — принесли нам самые высокие энергии, чем смог бы самый мощный наш ускоритель частиц. Следующий ключ к решению одной из самых больших проблем в физике может появиться из космоса, а не на Земле.

       Гравитационные волны

       На протяжении 101 года это был святой Грааль астрофизики: поиск прямых доказательств самого большого недоказанного предсказания Эйнштейна. Когда Advanced LIGO вышла на связь в 2015 году, ей удалось достичь чувствительности, необходимой для регистрации ряби пространства-времени из самого коротковолнового источника гравитационных волн во Вселенной: закручивающиеся по спирали и сливающиеся черные дыры. Имея два подтвержденных обнаружения за поясом (и сколько их еще будет), Advanced LIGO вывела гравитационно-волновую астрономию из области фантастики в область реальности.

       Что это означает для астрофизики. Вся астрономия до нынешнего момента была зависимой от света, от гамма-лучей до видимого спектра, микроволновых и радиочастот. Но обнаружение ряби в пространстве-времени — это совершенно новый способ изучения астрофизических явлений во Вселенной. Имея нужные детекторы с нужной чувствительностью, мы сможем увидеть:

       слияние нейтронных звезд (и узнаем, создают ли они гамма-лучевые вспышки); слияние белых карликов (и свяжем с ними сверхновые типа Iа); сверхмассивные черные дыры, пожирающие другие массы; гравитационно-волновые сигнатуры сверхновых; сигнатуры пульсаров; остаточные гравитационно-волновые сигнатуры рождения Вселенной, возможно.

       Сейчас гравитационно-волновая астрономия находится на самом старте развития, едва ли став проверенной областью. Следующими шагами будет увеличение диапазона чувствительности и частот, а также сопоставление увиденного в гравитационном небе с оптическим небом. Будущее грядет.

       И это мы еще не говорим о других великих головоломках. Есть темная материя: больше 80% массы Вселенной совершенно невидима для света и обычного (атомного) вещества. Есть проблема бариогенеза: почему наша Вселенная полна материи, а не антиматерии, хотя любая реакция, которую мы когда-либо наблюдали, полностью симметрична у материи и антиматерии. Есть парадоксы черных дыр, космической инфляции, еще не создана успешная квантовая теория гравитации.

       Всегда есть соблазн считать, что наши лучшие дни уже позади, а самые важные и революционные открытия уже сделаны. Но если мы хотим осмыслить самые большие вопросы из всех — откуда взялась Вселенная, из чего она на самом деле состоит, как появилась и куда движется, чем закончится — нам еще предстоит много работы. Имея беспрецедентные по размерам, диапазону и чувствительности телескопы, мы сможем узнать больше, чем знали когда-либо. Победа не бывает гарантированной, но каждый шаг, который мы предпринимаем, приближает нас на один шаг ближе к месту назначению. Неважно, куда это путешествие нас приведет, главное, что оно будет невероятным.

       Илья Хель

       Источник: https://hi-news.ru/science/pyat-prichin-pochemu-21-vek-stanet-rascvetom-astrofiziki.html

       


标签:政治
关键词: Вселенной     когда     Вселенная    
滚动新闻