用户名/邮箱
登录密码
验证码
看不清?换一张
您好,欢迎访问! [ 登录 | 注册 ]
您的位置:首页 - 最新资讯
Оптические компьютеры: решение сложных вычислительных задач путем перемножения световых сигналов
2021-02-15 00:00:00.0     军事工业综合体(俄罗斯)     原网页

        Оптические компьютеры.

       Источник изображения: industry-hunter.com

       В приложениях, основанных на использовании нейронных сетей, искусственного интеллекта и корректирующих кодов, существует обширный класс сложных вычислительных задач, которые можно решить, используя перемножение световых сигналов, считают исследователи из Кембриджского университета и Сколковского института науки и технологий (Сколтех).

       В своей статье, опубликованной в журнале Physical Review Letters, ученые предлагают новый вычислительный метод, который благодаря резкому сокращению количества необходимых световых сигналов с одновременным упрощением процедуры поиска оптимальных математических решений может произвести настоящую революцию в аналоговых вычислениях, открывая перспективы для использования сверхбыстрых оптических компьютеров.

       В отличие от классических ЭВМ, в которых используются электроны, оптические (фотонные) компьютеры основаны на использовании фотонов, генерируемых лазерами или диодами. Поскольку фотоны не имеют массы и движутся с большей скоростью, нежели электроны, считается, что оптический компьютер будет обладать сверхвысокой скоростью, энергоэффективностью и способностью обрабатывать информацию, используя сразу несколько временны?х или пространственных оптических каналов.

       Если в цифровом компьютере в качестве вычислительного элемента используются единицы и нули, то оптический компьютер оперирует непрерывной фазой светового сигнала. Вычисления в оптическом компьютере обычно выполняются путем сложения двух световых волн от разных источников и проецирования полученного результата на состояния ?0? или ?1?.

       Однако в реальной жизни нередко возникают сложные нелинейные задачи с множеством неизвестных, которые при перемножении одновременно изменяют значения других неизвестных, и традиционная схема оптических вычислений с линейным сложением световых волн в такой постановке уже не работает.

       Профессор факультета прикладной математики и теоретической физики Кембриджского университета и Центра Сколтеха по фотонике и квантовым материалам (CPQM) Наталья Берлофф и аспирант Сколтеха Никита Строев установили, что в оптических системах функции, описывающие световые волны, можно не складывать, а умножать, получая таким образом другой тип взаимодействия между волнами.

       Исследователи проиллюстрировали этот феномен с помощью поляритонов – квазичастиц, состоящих наполовину из света и наполовину из материи, а также рассмотрели эту идею применительно к более широкому классу оптических систем, таких как световые импульсы в волокне. Поскольку поляритоны частично состоят из материи, то, находясь в пространстве, сверхбыстрые когерентные поляритоны могут генерировать очень слабые импульсы или образовывать кластеры, нелинейно перекрывая друг друга.

       Оказалось, что самое главное — это найти способ объединить эти импульсы, — отмечает Никита Строев. — Если правильно их объединить и добиться нужной интенсивности света, свет будет усиливаться, оказывая влияние на фазы отдельных импульсов и тем самым подсказывая решение для нелинейных задач.

       Перемножение волновых функций с целью определения фазы светового сигнала в каждом элементе оптической системы обусловлено нелинейностью, которая возникает естественным образом или привносится в систему извне.

       Для нас стал неожиданностью тот факт, что проецировать непрерывные световые фазы на состояния? 0? и ?1? (как это делается при решении задач в двоичных переменных) больше не нужно, — рассказывает Никита Строев. — Система, как правило, сама генерирует эти состояния в результате поиска конфигураций с минимальной энергией. Возникновение этого эффекта как раз связано с перемножением световых сигналов. В исследованных ранее оптических машинах, напротив, использовалось резонансное возбуждение, с помощью которого световые фазы извне фиксировались на двоичных значениях.

       Авторы также предложили и реализовали метод, позволяющий подводить систему к лучшему решению за счет временного изменения силы взаимодействия между сигналами.

       Теперь нам нужно определить классы задач, которые можно решать с помощью специального физического процессора, — поясняет профессор Сколтеха Наталья Берлофф. — Одним из таких классов задач являются задачи бинарной оптимизации более высокого порядка, и оптические системы могут быть построены таким образом, чтобы с высокой эффективностью решать такие задачи.

       Однако прежде чем будет доказано превосходство оптических систем над существующими компьютерами в решении сложных вычислительных задач, предстоит разобраться с такими серьезными проблемами, как снижение шума, исправление ошибок, улучшение масштабируемости, поиск объективно оптимального решения и т.д.

       Если наш подход адаптировать под конкретные типы задач, не исключено, что оптические компьютеры можно будет использовать для решения реальных проблем, с которыми классические компьютеры уже не в состоянии справиться, — сказала в заключение Наталья Берлофф.

       


标签:军事
关键词: оптические     оптических     световых     задач    
滚动新闻
    相关新闻